Search results

Search for "non-contact atomic force microscope (NC-AFM)" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • the first molecules studied in HV-ESD experiments [5][30]. Here, we present a comparison between TE and HV-ESD regarding the adsorption and structure formation of C60 molecules on surfaces at low coverages, that is, below one monolayer down to single molecules. We used a non-contact atomic force
  • microscope (nc-AFM) working at room temperature to study formation and shape of C60 islands on three substrates with different intrinsic properties. These are, first, Au(111), a metal surface widely used in SPM studies, second, KBr(001), a bulk insulator allowing for the decoupling of molecular species and
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Understanding interferometry for micro-cantilever displacement detection

  • Alexander von Schmidsfeld,
  • Tobias Nörenberg,
  • Matthias Temmen and
  • Michael Reichling

Beilstein J. Nanotechnol. 2016, 7, 841–851, doi:10.3762/bjnano.7.76

Graphical Abstract
  • Alexander von Schmidsfeld Tobias Norenberg Matthias Temmen Michael Reichling Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany 10.3762/bjnano.7.76 Abstract Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM
  • displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions. Keywords: displacement noise spectral density; interferometer; non-contact atomic force microscope (NC-AFM); opto-mechanic
  • measurement makes the interferometer a suitable system for displacement detection in a cantilever based non-contact atomic force microscope (NC-AFM) [7]. In contrast to a classical interferometer, the setup commonly involving a fiber end and a cantilever is characterized by a significant beam divergence and a
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2016

Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

  • Philipp Leinen,
  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2015, 6, 2148–2153, doi:10.3762/bjnano.6.220

Graphical Abstract
  • position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2015

Electrospray deposition of organic molecules on bulk insulator surfaces

  • Antoine Hinaut,
  • Rémy Pawlak,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2015, 6, 1927–1934, doi:10.3762/bjnano.6.195

Graphical Abstract
  • resolution at room temperature. Experimental All experiments were performed under UHV conditions (p < 10−10 bar) with our home-built non-contact atomic force microscope (nc-AFM), operating at room temperature (RT) [48]. Bulk insulator KBr(001) crystals surfaces (from MaTeck GmbH) were prepared in situ by
PDF
Album
Full Research Paper
Published 18 Sep 2015
Other Beilstein-Institut Open Science Activities